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Abstract

This paper presents an overview of an approach to address complexity issues
and real-life engineering problems in large, urban transportation systems. In
this context we discuss the fundamental problem of designing a metropolitan
transportation system which is both e�cient and controlable.



1 Urban transportation systems

More and more metropolitan areas worldwide su�er from a transportation de-
mand which exceeds capacity. In many cases, it is not possible or even not
desirable to extend capacity to meet the demand [1]. In consequence, a consis-
tent management of these large, distributed transportation systems has become
more and more important. Examples of such activities include the construc-
tion of fast mass transit systems, the introduction of local bus lines, design of
traveler informational systems and car pooling to improve the use of current
capacity, introduction of congestion pricing, and in the long term also guidance
of the urban planning process towards an evolution of urban areas with lower
transportation needs.

At the level of a metropolitan region, the transportation dynamics is the
aggregated result of thousands or, in some cases, millions of individual trip-
making decisions for the movement of people and goods between origins and
destinations. Every decision is based on incomplete information of the state
of the transportation system as a whole. Since complete global knowledge of
every relevancy of the current (and future) state(s) of a transportation system
is impossible to obtain, future information based control strategies might, to
a large extent, be based strategies exploiting self-organizing properties of the
systems. That would still not remove the inherent tension between global and
local transportation optima. This essential tension is one of many reasons why
predictability is very di�cult in such systems.

One method of approaching these and other inherent complexities of the
large transportation systems is to represent the systems and generate their dy-
namics through simulation in order to asses them. The most straightforward
way seems to be a bottom-up microsimulation of the dynamics of all travelers
and loads at the level of where the transport decisions are made. Starting with a
generation of travel demands derived from synthesized traveler populations and
consequent trip planning decisions, over production of associated tra�c and
eventually the consequences for congestion, travel time, air quality, and other
dynamical system properties, can be all be generated, and thus analyzed. This
is the approach used by the TRANSIMS project [2], which this work also is a
part of.

2 TRANSIMS

The TRansportation ANalysis and SIMulation System (TRANSIMS) is part
of the multi-track Travel Model Improvement Program sponsored by the U.S.
Department of Transportation and the Environmental Protection Agency. Los
Alamos National Laboratory is leading its development. TRANSIMS will ad-
dress issues resulting from the Intermodal Surface Transportation and E�ciency
Act of 1991, such as considerations of land use policies, intermodal connectiv-
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ity, and enhanced transit service. It will support analysis of potential responses
to the stringent air-quality requirements of the Clear Air Act Amendments of
1990.

The TRANSIMS project objective is to develop a set of mutually supporting
realistic simulations, models, and data bases that employ advanced computa-
tional and analytical techniques to create an integrated regional transportation
systems analysis environment. By applying forefront computational technolo-
gies and advanced methods relevant to complex systems analysis it will simulate
the dynamic details that contribute to the complexity inherent in today's and
tomorrow's transportation issues. The integrated results from the various de-
tailed simulations will support transportation planners, engineers, and others
who must address environmental pollution, energy consumption, tra�c con-
gestion, land use planning, tra�c safety, intelligent vehicle e�cacies, and the
transportation infrastructure e�ect on the quality of life, productivity, and econ-
omy.

Fig. 1 illustrates the TRANSIMS architecture [2]. The TRANSIMS meth-
ods deal with individual behavioral units and proceed through several steps to
estimate travel.

TRANSIMS predicts trips for individual households, residents, freight loads,
and vehicles rather than for zonal aggregations of households. The Travel De-
mand Module (module 1 in �g. 1) generates the households and commercial
activities through the creation of regional synthetic populations from census
and other data. Using activity-based methods and other techniques, it then
produces a travel representation of each household and traveler.

The Intermodal Route Planner (module 2 in �g. 1) involves using a demo-
graphically de�ned travel cost decision model particular to each traveler. Vehicle
and mode availability are represented and mode choice decisions are made dur-
ing route plan generation. The method estimates desired trips not made (latent
demand), induced travel, and peak load spreading. This allows evaluation of
di�erent transportation control measures and travel demand measures on trip
planning behaviors.

The Tra�c Microsimulation (module 3 in �g. 1) executes the generated trips
on the transportation network to predict the performance of individual vehicles
and the transportation system. It attempts to execute every individual's travel
itinerary in the region. For example, every passenger vehicle has a driver whose
driving logic attempts to execute the plan, accelerates or decelerates the car, or
passes as appropriate in tra�c on the roadway network.

The Tra�c Microsimulation produces tra�c information for the Air Quality
Module (module 4 in �g. 1) to estimate such things as motor vehicle fuel use,
source emissions, dispersion, transport, air chemistry, meteorology, visibility,
and resultant air quality. The emissions model accounts for both moving and
stationary vehicles. The regional meteorological model for atmospheric circu-
lation is supplemented by a model for local e�ects. The dispersion model is
used for directly emitted contaminants and handles both local and urban scale
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Figure 1: The TRANSIMS architecture. Viewing a metropolitan transportation
system as a large dynamical system enables us to isolate dynamics of di�erent
time scale. Urban evolution which operates over years - the left part of the �gure
- is currently not a part of the TRANSIMS project. TRANSIMS is currently
primarily concerned with the shorter time scale dynamics. It assumes a cer-
tain land use and transportation infrastructure and starts out by estimating the
travel demand on a day-to-day or week-to-week basis. This estimated travel de-
mand is then being routed including mode choices and trans shipment processes.
For instance note that the transportation of fuel oil and school children poses
very di�erent constraints on the the mode of transportation. Once the routing
is completed a microsimulation of the actual trips occurs which deals with the
second-to-second dynamics. As an important side e�ect of urban tra�c the mo-
bile source pollution generation can be computed and the resulting air quality
impact estimated.

problems. The air chemistry model includes dispersion, but is designed to deal
with secondary pollutant production on larger scales.

An important aspect to note at this point is that all these modules describe
di�erent time scales, but always reference individual travelers. Activity plan-
ning operates on a daily or even weekly (e.g. shopping) basis; trip planning on
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a link traversal time basis constraints changing approximately on a daily basis;
the microsimulation on a second-by-second basis; a typical time-scale for mete-
orological model is of the order of 5 minutes. Yet, these modules are not only
connected \downwards" as described above. Various feedbacks couple these
modules. Unplannable trips will change the weekly activities of individuals;
trips which in the microsimulation take much longer than planned will need
replanning; etc. In the most extreme case; all submodules feed back into urban
evolution and settlement patterns: Bad air quality, tra�c jams or unful�llable
transportation demands all make people or businesses to relocate.

3 Travel time variance and unpredictability

The advantage of a microsimulation approach is that the system dynamics is
being generated through the simulation with all its emergent properties without
any explicit assumptions or aggregated models for these properties. The major
disadvantages of a complete microsimulation are extremely high computational
demands on one side and perhaps explanatory problems on the other. The
inclusion of many details of reality may be excellent for generating a dynamics
which is close to the system under investigation, but it does not necessarily lead
to a better understanding of the basic (minimal) mechanisms that cause the
dynamics. Therefore the TRANSIMS project also includes the investigation of
much simpler and computationally less demanding models and simulations, for
example the one we are going to discuss here.

One of the important issues both for analysis and for realistic simulation
of transportation systems is their high variability and the e�ect this has on
predictability. Here, we want to concentrate on one particular source of un-
predictability which may very well become important in a foreseeable future:
Assume that tra�c management measures and modern information technology
(see, e.g., [4, 5]) succeed in moving the transportation system closer towards
higher e�ciency. Then we face an interesting problem because in transporta-
tion systems (and presumably also in many other large, distributed man-made
systems), there is a \critical" regime around maximum capacity, where the sys-
tem is very sensitive to small perturbations. Small perturbations will generate
large uctuations in congestion formation and thus travel times.

To investigate this phenomenon we can initially concentrate on an extremely
simpli�ed transportation system. We only include vehicular tra�c, and we
assume that all vehicles are of the same type. Our system includes only single
lane tra�c on a circular road, and the driving dynamics is generated by only a
few very basic rules. Using a cellular automata of the form (2) and (3) and a
parallel update functional U we can obtain a very simple dynamic tra�c system
{ a simulation { of the form

fSi(t+ 1)g = UfSi(t)g (1)
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where
Si = Si(xi; yi; zi; fij; t) (2)

is the ith car (object), xi its position on a 1-D lattice, yi its current state
(velocity), zi its neighborhood in front (gap to next car, which is object j), and
fij their interaction rules

fij(xi(t); yi(t); zi(t))! (xi(t+ 1); yi(t+ 1)); (3)

which changes the location and the internal state of current car (object). For
a detailed discussion of the dynamics we refer to [3, 9, 10]. The algorithm for
the dynamics is for completeness also listed in the appendix. For a general
discussion of some of the mathematical properties of dynamical systems of the
form (1) we refer to [14].

The critical regime e�ect can be seen in Figure 2. The top plot shows ow as
a function of density. The middle plot shows the average time, tl, that a vehicle
in the simulation needs in order to travel l = 750 meters. And the bottom plot
shows the relative variance of this travel time, i.e.

�(tl) :=

p
h(tl � htli)2i

tl
: (4)

where h: : :i denotes the average over all cars during the simulation; htli there-
fore is the average travel time for all cars during the simulation. | Note the
explosion of the variance near maximum ow.

On an intuitive level, this is fairly straightforward to understand: If, in
light tra�c, some short temporary disturbance happens (e.g. a minor accident),
the queue caused by this disturbance will be dissolved very quickly after the
accident has been cleared away. If the same happens in very dense tra�c, it will
not have any grave e�ect because there is congestion all over the system anyway
and it just shifts the pattern. However, in between these two regimes there is
a tra�c density, where there are only few jams in the system, but the new
jam caused by the accident has di�culties to dissolve. This is the tra�c density
when small disturbances, such as a minor accident, have maximuminuence. |
Technically, one can use the language of a directed percolation phase transition
to precisely describe what happens [6]. A �rst order (critical) phase transition
exists in the system.

4 Simple adaptive agents

Obviously, any traveler would like to avoid congestion if possible. Given a
transportation network, travelers will try to route the trips around congested
areas if alternative routes are not too long or too costly. To see what this
routing behavior does with the overall dynamics in a transportation network
we can formulate a minimal tra�c network. Here the travelers have individual
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Figure 2: Throughput, travel time, and variations of travel time as a function
of density. Note the explosion of the variance near maximum ow.
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Figure 3: Schematic sketch of the network used for the simulations. Vehicles
drive from A to B and can choose between the direct route and the much longer
alternative route. On the direct route they encounter a bottleneck. Other vehicles
drive from C to D.

routing plans and can make decisions about which route they want to take
depending on knowledge of congestion. They can also re-plan depending on
their earlier experiences of travel time.

Imagine (see Fig. 3) a road from A to B with capacity qmax, with a bottle-
neck with capacity qbn shortly before B. Further imagine that there exists an
alternative, but longer route between A and B. On the direct route from A to
B additional travelers from C have to go to destination D. First assume that
there are no travelers with origin in C.

If many drivers are heading fromA to B, they will, without knowing anything
about the overall tra�c situation, all enter the direct road. In consequence, a
queue builds up from the bottleneck.

A Nash-Equilibrium is de�ned as a situation where no agent (= driver) can
lower his or her cost (= decrease travel time) by unilaterally changing behavior.
Assuming that the drivers have complete information, this implies that the
waiting time in the queue exactly compensates for the additional driving time
on the alternative route.

Now assume that there are additional travel demands from C to D (see
Fig. 3), the exit for the latter lying shortly before the bottleneck. Obviously, this
tra�c is su�ering from the bottleneck queue upstream (= left) of the bottleneck,
and from these travelers' point of view it would be much better if the queue were
located to the left of the ramp that the travelers from C use to enter the link.
Note that moving the queue further upstream does not make any di�erence for
the drivers originating in A. | This example illustrates that one easily �nds
situations where there are better overall solutions than the NE.
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A way to push a tra�c system from a NE towards a better overall solution
is to keep the density on each road at or below ��, the density of maximum
throughput. Then there would not exist queues anywhere in the system, thus
ensuring that additional tra�c could proceed undisturbed. Note that this could
for instance imply (in the limit of a perfect implementation) that drivers have
to wait to enter the road network until su�cient capacity is available for them.

One possible way to achieve this is to introduce a congestion-dependent toll
(\congestion pricing" as opposed to \road pricing"), and this toll is simply
increased until the density on the respective link has dropped to the desired
level.

This is exactly the system that we simulated.
In our simple network, there are only two di�erent types of travelers: Trav-

elers from A to B, and travelers from C to D. Travelers from A to B can choose
between the direct and the longer alternate route. In order to make decisions,
each AB-driver remembers his or her last travel-time on each of the two routes.

A traveler calculates expected costs [7] according to

costdirect = toll + � � tdirect (5)

and
costalt = � � talt (6)

where costdirect and costalt are the expected costs for the two route choices, toll
is the toll for the current day (see below), tdirect and talt are the remembered
travel times for each route, and � is a conversion factor which reects trade-o�
between time and money. � could be di�erent for each driver, but is uniformly
equal to one in this work. (� reects \standard values of time", VOT, which
can be looked up for tra�c systems.)

Then, each driver chooses the cheaper route, except that there is a 5%
probability of error (which gives each driver a chance from time to time to
update her information about the other possibility).

As long as the tra�c dynamics is deterministic and completely uniform, this
scheme leads to a Nash equilibrium [7]. However, in our case of stochastic tra�c
dynamics, this is no longer true: There might well be a decision rule di�erent
from the one above where at least one traveler is better o�, for example by
triggering some kind of day-to-day oscillation between the two routes and taking
advantage of it. In other words, by dealing with stochastic tra�c dynamics, the
notions of economic equilibrium theory have to be used with care.

We describe 200 consecutive days of a simulation where the toll was kept at
zero during the �rst 100 days, and in addition all A-B-travelers were forced to
use the direct route during the �rst 50 days.

Fig. 4a shows results for the trip times and the adaptive toll, Fig. 4b the
vehicle-to-vehicle variations of the trip time (as de�ned earlier), and Fig. 4c
the day-averaged density, on selected road sections. These sections are: (i) the
section where the density for the toll adaptation is measured, (ii) the section of
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Figure 4: Simulation output for 200 iteration of the simple corridor network
model. Time-steps 1-50: No adaptation; 51-100: drivers can choose alternative
route; 101-200: drivers can choose alternative route, and the toll adapts in order
to keep the density at an e�cient level. Top: Average trip times for the direct
and for the alternative route from A to B as well as for the route from C to D,
and toll for the direct route from A to B. Middle: Vehicle-to-vehicle uctuations
of trip time for the direct and for the alternative route from A to B. Bottom:
Densities on the segment shared by A-B-direct travelers and C-D-travelers, on
the segment shortly before the bottleneck used for determination of the toll, and
on the alternative route from A to B.

the main road between the on-ramp from C and the o�-ramp towards D, and
(iii) the alternative route.

Even when allowed (i.e. after day 50), not many of the A-B drivers use the
new option of the alternative route. This is to be expected, since it is more
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than six times longer than the direct one. In consequence, travel times and
uctuations do not change much.

After day 100, the adaptive tolling starts and fairly quickly reaches a sta-
tionary value around 260. As the \toll" line in Fig. 4c indicates, this keeps
indeed �toll near the \e�cient" range between � = 0:06 and 0:10. In addition,
the density on the main segment (used by both A-B and C-D travelers) drops
to around 0:11, above, but close to the density of maximum throughput.

Travel times for C-D and for A-B-direct travelers go down (Fig. 4a); and the
toll just o�sets the time gain for use of the direct route: timedirect + � � toll �
timealternat: (recall that � = 1).

Vehicle-to-vehicle uctuations (Fig. 4b) for the use of the alternative road go
up from ca. 2% to around 12%, and for the use of the direct road from ca. 11%
to around 42%. Moreover, the day-to-day uctuations also seem to go up in all
measurements.

One should distinguish between two di�erent kinds of uctuations: Fluctua-
tions due to the dynamics, and uctuations due to the learning. The uctuations
in the latter might be due to the speci�cs of the chosen learning scheme, es-
pecially the lack of historic information beyond the last day. More realistic
assumptions about the learning and en-route information are claimed to avoid
that [8]. However, the results for the vehicle-to-vehicle uctuations (i.e. the �

as de�ned in the text) only depend on the fact that the tra�c density is driven
towards the critical value. A less uctuating learning scheme should therefore
even increase our values for �. For more details, see [9, 10].

The above work has to a large extent been motivated by Arthur's \bar prob-
lem" [11]: Assume that people want to be in a bar when it is neither too empty
nor too crowded, similar to the wish of not wanting to spend too much time
traveling which results in a choice of either the direct or the alternative route
(going to the bar or not). Also, the individual decision dynamics is fairly equiv-
alent: Individuals make their choice, then execute their decision, the outcome
of this is added to each individual's personal experience, and the cycle starts
again. A fairly important di�erence between Arthur's work and ours, is that
Arthur needs many di�erent, albeit simple, decision rules for each individual to
stabilize the outcome. In the tra�c case this has not been necessary. Arguably,
in the tra�c case, the dynamics itself already provides enough uctuations that
individuals, even when faced with the seemingly same problem, make di�erent
decisions.

5 Self-organized criticality in tra�c networks

Now we are in a position to justify our initial claim that tra�c management
measures will lead to higher uctuations and thus lower predictability in tra�c
networks. The last section clearly shows that tra�c management measures
will tend to \equilibrate" tra�c patterns, that is, to make overused parts of the
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system less overused, and to make underused parts of the system less underused.
Quite in general thus, the wholes system tends to operate closer to the point of
maximum e�ciency. But as stated in Section 3 and also recovered in Section 4,
this regime is the regime where variations are highest, or, in other words, the
system naturally evolves into a state where uctuations are highest, which can
be seen as yet another example of self-organized criticality [12].

That means that, for an individual driver, it is really impossible to predict
how long a certain trip along a certain route will actually take. Which means
in return that neither a driver nor an omniscient tra�c management system
can decide which of several possible paths might be the fastest or best. In this
way, it is the increasing unpredictability caused by the tra�c management which
eventually impedes further improvement.

It is clear that this argument would bene�t from further simulations in re-
alistic tra�c networks. Although this has not yet been done, the following
section shows an agent based simulation which has all the ingredients for such
an investigation.

6 A realistic network

In this section, we want to explain how the above methods can be extended
to simulate tra�c in realistic networks. As a practical example, we use the
freeway network of the German land Northrhine-Westfalia (NRW). We only
show results of a single-lane implementation. Multi-lane implementations are
straightforward [13] but only make sense when one expects that the possibility
of passing introduces additional e�ects.

The important elements of the approach are (i) individual trip plans, i.e. each
\driver" knows before the start of the simulation which route he/she wants to
take, and (ii) the use of individual decision rules based on past \simulated"
experience. Roughly, for a plot like Fig. 5, the following was done in the simu-
lation:

� At the beginning of each \period" (� rush \hour"), there were 20 ordered
queues of vehicles with drivers waiting to enter into the network. Each
queue consisted of 2000 vehicles.

� Each simulated driver had an individual destination, and the set of the
10 shortest paths to that destination to select from.

� Each driver randomly selected a yet untried path; or in case all paths had
been tried, he/she selected the path which had performed best in the past
(with a small random chance to try something else again).

� The simulation is executed, with each driver following his/her path. If too
many vehicles attempt to use the same road section, this creates congestion
such as in Fig. 5.
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Figure 5: Simulated tra�c jams in a single-lane implementation of the free-
way network of the German land Northrhine-Westfalia (NRW). Situation at
\day 16" after 6000 iterations (100 minutes). Free tra�c is denoted by dots,
critical tra�c by light gray `x', and jammed tra�c by triangles.

This scheme was executed for several consecutive periods, until the congestion
pattern \relaxed" to a pattern which did not change much from one period
to the next. This was usually reached after simulating 15 periods; note that
10 periods were necessary until each driver had tried each of his/her options.

Obviously, it will be necessary to replace the arbitrary origin/destination
pattern of these simulations by more realistic data. Yet, some of the network
bottlenecks seem generic with respect to transit tra�c through NRW: The jams
between Wuppertal and Kreuz Kamen are well known, and, as one sees, a
consequence of the missing extension of the freeway A4 beyond Olpe. This
extension has since long been planned; but it leads through environmentally
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sensitive areas, and it is thus under discussion if it will ever be built. Note that
the simulation methodology presented here can be used to evaluate the utility
of such an extension, or what is needed to replace it by improvements along
existing paths. Or, which tra�c streams have to be reduced in order to manage
with the currently existing infrastructure, and how this can be achieved.

The problems near Krefeld are due to the same bottleneck in North-East/South-
West direction. It is also known that the K"olner Ring presents a bottleneck.

For further details, see [10].

7 Conclusion

All the above is in agreement with our intuition that tra�c management can
indeed make tra�c more e�cient, but may in addition lead to higher uctu-
ations and, as a consequence, lower predictability, since the system is driven
closer to capacity and thus to criticality. In summary we seem to have reached
a paradox: In wanting to obtain a better control of the transportation system,
by the introduction of a tra�c management system, we actually produce a more
unpredictable tra�c dynamics. This happens because the tra�c management
system in essence moves tra�c from more congested roads to less congested
roads, and thus as a whole, forces the transportation system into the critical
regime where small perturbations have a large inuence on the microscopic dy-
namics. Network tra�c produced with adaptive drivers and tra�c management
systems is therefore an example of self-organized critical dynamics.

Since air pollution as well as serious accidents also are maximal where ac-
celeration and de-acceleration is maximal, the critical regime, in addition to its
non-controlabillity, produces these highly non-desirable sides e�ects.

Are Tra�c Management systems then not desirable? This is probably the
wrong way to look at it. For example in stock markets, modern information tech-
nology has brought the market uctuations to much higher levels than before,
and traders just have learned to live with that (and have introduced additional
�nancial instruments which insure against the risks of uctuations). It is also
unclear if society will accept a completely e�cient way of tra�c management|
for example, congestion pricing (unfortunately often confused with road pricing)
seems to evoke strong opposition by many people. And then there is always the
possibility that, when we are aware of the risks, we are able to design tra�c
management systems which circumvent the problems | maybe by having less
e�cient ows | ows below maximal capacity and thus criticality.
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Appendix

The simple, single lane 1-D cellular automata used in the simulations for this
paper are give by the following four rules [3]:

FOR all vehicles i 2 f1; : : : ; Ng DO
(1) IF velocity[i] < V max AND gap[i] > velocity[i]

THEN velocity[i] = velocity[i] + 1.
(2) IF gap[i] < velocity[i] THEN velocity[i] = gap[i].
(3) IF velocity[i] > 0 THEN with probability 0.5 velocity[i] = velocity[i] � 1.
(4) position[i] = position[i] + velocity[i].
END

where position[i] is current position of vehicle i, velocity[i] current velocity of
vehicle i, gap[i] distance to nearest vehicle ahead of vehicle i, and Vmax the
maximum velocity of each vehicle. Note that, because all values are integer,
relations like gap < velocity and gap + 1 � velocity are equivalent. For more
details we refer to [3].
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